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The classical Heisenberg model on the trillium and distorted windmill lattices exhibits a degenerate ground
state within large-N theory where the degenerate wave vectors form a surface and line, in three-dimensional
space, respectively. We name such states partially ordered to represent the existence of long-range order along
the direction normal to these degenerate manifolds. We investigate the effects of thermal fluctuations using
Monte Carlo �MC� methods and we find a first-order transition to a magnetically ordered state for both cases.
We further show that the ordering on the distorted windmill lattice is due to order by disorder, while the ground
state of the trillium lattice is unique. Despite these different routes to the realization of low-temperature ordered
phases, the static structure factors obtained by large-N theory and MC simulations for each lattice show
quantitative agreement in the cooperative paramagnetic regime at finite temperatures. This suggests that a
remnant of the characteristic angle-dependent spin correlations of partial order remains above the transition
temperatures for both lattices. The possible relevance of these results to �-Mn, CeIrSi, and MnSi is discussed.
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I. INTRODUCTION

Geometrically frustrated �GF� magnetic systems offer a
rich avenue to the search for emergent or collective phases of
matter. Frustrated magnetism arises when spins between
nearby magnetic sites cannot form a unique alignment to
minimize their magnetic interactions, and it leads to the pos-
sibility of a macroscopically degenerate classical ground
state. Materials with antiferromagnetic nearest-neighbor in-
teractions between local moments lying at the sites of corner-
sharing tetrahedra or triangles comprise a considerable frac-
tion of the GF magnetic systems known to date.

Most magnetic materials select a particular ordering wave
vector, representative of their magnetic structure, upon the
onset of magnetic order. In contrast, in frustrated magnets, it
is not uncommon to find within the mean-field approxima-
tion a set of degenerate continuously connected “ordering
wave vectors,” which span the three-dimensional �3D� space.
For example, the disordered ground state of the classical
Heisenberg model on the pyrochlore lattice1,2 features such a
wave-vector manifold. Partially ordered magnets lie between
these two extremes, forming degenerate wave-vector 2D sur-
faces or 1D lines in a 3D space. The name of “partially
ordered” comes from the fact that there is a long-range order
along the direction normal to this degenerate manifold. In
other words, in such systems, to very low temperatures, a
system may appear disordered/ordered to measurements
probing parallel/perpendicular directions to this line or sur-
face. A growing number of frustrated spin models have been
shown to exhibit such a partial order.3–6 Experimental evi-
dence for partial order has been observed in single-crystal
neutron-scattering measurements of the correlated metals,
MnSi �Ref. 7� under pressure, and CeCu5.9Au0.1 �Ref. 8�,
although in these materials it is unlikely to arise from con-
siderations as simple as here considered.

Our interest in this problem arose from the realization that
partial order has been found using large-N theory on both the

trillium and distorted windmill lattices. The key question we
address in this paper is whether these partially ordered states
can be captured beyond the large-N theory.9 If not, to what
extent can the results of large-N theory be regained due to
thermal fluctuations? We answer this question by carrying
out large scale classical Monte Carlo �MC� simulations of
the antiferromagnetic �AF� Heisenberg model on the trillium
and distorted windmill lattices.

Large-N theory and MC simulations of the classical
Heisenberg model give consistent results for both highly
frustrated systems �e.g., on the pyrochlore lattice a disor-
dered ground state is found� and for unfrustrated lattices
�e.g., choosing the correct ordering wave vector�.10 Despite
this trend, the finding of a partially ordered ground state in
large-N theory does not necessarily translate into a partially
ordered ground state within MC simulations. We find that the
classical Heisenberg model on both the trillium and distorted
windmill lattices shows a first-order phase transition to a
coplanar magnetically ordered state featuring neighboring
spins rotated by 120°. We further show that this model on the
trillium lattice does not have a macroscopic ground-state de-
generacy. The chosen 120° coplanar state is a unique ground
state, and the partial order is an artificial effect of the spheri-
cal approximation constraint11 used in the large-N theory.3

On the other hand, the selection of a particular coplanar or-
dering on the distorted windmill lattice proceeds due to an
order by disorder mechanism.

In the cooperative paramagnetic state �for an
intermediate-temperature regime Tc�T��CW extending an
order of magnitude below the intercept of a Curie-Weiss fit,
�CW�, we find that the large-N description remains quantita-
tively valid for both lattices despite the inability of large-N
theory to capture the true nature of the classical ground state.
That is, calculations of the angle-resolved static structure
factor by large-N and MC techniques show at most a 5%
difference. We will henceforth refer to this temperature win-
dow as the cooperative paramagnetic regime as it features
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reasonably strong but short-range spin correlations, finite
temperature remnants of an avoided partial order.

In the next section, we present the structures of the two
lattices and discuss the approaches used to study the mag-
netic properties of the classical Heisenberg model on these
lattices. We show the results of MC simulations on the tril-
lium and distorted windmill lattices in Secs. III and IV, re-
spectively. In particular, we focus on the questions addressed
above: “Is there a transition to a magnetically ordered state at
finite temperatures?” and “If so, do we find remnants of the
partial order above the transition temperature as a result of
thermal fluctuations?” We also address the mechanism of
ordering in these lattices after an enumeration of their ground
states. The possible relevance of these results to real materi-
als and the conclusion are discussed in Sec. V. A heuristic
derivation of the degeneracy of the model on the distorted
windmill lattice is presented in the Appendix.

II. MODEL, LATTICE STRUCTURES, AND APPROACHES

We study the classical O�N� model on the trillium and the
distorted windmill lattices given by the following Hamil-
tonian:

H = J�
�ij�

Si · S j , �1�

where J�0 is the antiferromagnetic exchange coupling con-
stant, the sum runs over the nearest neighbors only, and S
= �S1 , . . . ,SN� is an N-component classical spin.

It was shown in Ref. 3 that the magnetic lattice of MnSi
forms a three-dimensional network of corner-sharing equilat-
eral triangles with the cubic P213 symmetry shown in Fig.
1�a�, which we have named the trillium lattice. The trillium
lattice is common to many systems including the antiferro-
magnetically correlated Ce local moments of CeIrSi. The
magnetic lattice of �-Mn, the distorted windmill lattice
�P4132 symmetry�, bears a remarkable qualitative resem-
blance to the trillium lattice as shown in Fig. 1�b�. In par-
ticular, both lattice structures feature three corner-shared
equilateral triangles joined at a common site. The coordi-
nates of each site within a unit cell for both the trillium
lattice3 and the distorted windmill lattice13 have been previ-
ously presented. For completeness, these are listed in Table I.

To carry out a quantitative comparison between large-N
theory and N=3 Monte Carlo results, we have carried out
large scale classical Monte Carlo simulations of the N=3
Heisenberg model on the trillium and the distorted windmill
lattices for lattices with ns=n�L�L�L spins, where n is
the number of sites �or spins� in the unit cell and L is the
number of spins along each dimension of a cube. On the
trillium lattice �n=4�, we have considered L= �6,9 ,12,18�.
On the distorted windmill lattice �n=12�, we have consid-
ered L= �6,8 ,12�. The standard metropolis algorithm has
been used, in which we attempt to update a spin within a
small angular range � around its original direction. We
choose � in such a way that around 50% of attempted spin
updates are accepted. Starting with a random configuration,
we usually perform 2�105 Monte Carlo steps �MCS� for
equilibration and 106 MCS for measurements with one MCS

consisting of �ns /T single spin updates, where T is the tem-
perature.

Within large-N theory, one writes the partition function
for the N-component spin model14 and solves for the spin-
spin correlations3,15,16 in the limit N→�. That is we rewrite
the Hamiltonian as

H =
T

2 �
i,j

MijSi · S j , �2�

where Mij is the interaction matrix and the spins are subject
to the constraint Si

2=N. The corresponding partition function
is given by

FIG. 1. �Color online� Magnetic sites of �a� the trillium lattice
and �b� the distorted windmill lattice. In both cases three corner-
shared equilateral triangles meet at each spin. The unit cell of the
trillium lattice is only four sites and the next smallest spin loop is
five sided. The unit cell of the distorted windmill lattice is 12 sites
and the smallest spin loop is four sided. Atoms within the first unit
cell are depicted �Ref. 12� in boldface �black� and labeled as in
Table I.
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Z =	 D�D	e−S��,	�, �3�

with the action,

S��,	� = �
i,j

1

2
Mij�i · � j +

	i

2
�ij��i · �i − N�� , �4�

where �i= ��i
1 , . . . ,�i

N� is an N-component real vector field
and 	i the Lagrange multiplier for the constraint �i ·�i=N.
To proceed, we take the N→� limit and set a uniform 	i
=	0. The locations i= �l ,
� of spins can be labeled by those
of the cubic unit cell l=1, . . . ,nc and the lattice sites 

=1, . . . ,n within the unit cell �nc=L�L�L is the total num-
ber of the unit cells in the lattice�. The Fourier transform
with respect to the positions of the unit cells leads to

S��� = �
q

�

,�

1

2
Aq


��q,
 · �q,�, �5�

with Aq

�=Mq


�+�
�	0. Performing Gaussian integrations
over the � fields in Eq. �3�, one finds that 	0 is determined
by the saddle point equation,

nnc = �
q

�
�=1

n
1

�q
� + 	0

, �6�

where �q
� are the eigenvalues of the n�n interaction matrix

Mq

� �which has been shifted such that Min�q

��=0 and � is
the inverse temperature. Note that the sum over q is carried
out for finite-size periodic lattices to effectively compare
with the Monte Carlo results. Plugging 	0 back into Eqs. �3�
and �4�, we readily deduce the spin-spin correlation func-

tions. For example, these can be found by calculating the
second derivative of Z with respect to an auxiliary field,
which couples to the spin and can be added to Eq. �4�. The
static structure factor is found to be,

S�q� � �
�,��=1

n

�Sq
��S−q

� � = �
�,��,�=1

n U���U��
�

�q
� + 	0

, �7�

where U is the matrix that diagonalizes the interaction matrix
Mq


�, � and � are the sublattice indices. Note that, for sim-
plicity, we will normalize spins to �N in the large-N theory.17

To compare with MC results �N=3�, one needs to fix the
energy scale. Here we rescale J→J /3 in q

�.

III. TRILLIUM LATTICE

Within large-N theory, we reported3 that the classical AF
Heisenberg model on the trillium lattice has a partially or-
dered ground state, with a surface of degenerate wave vec-
tors following

cos2�qx

2
� + cos2�qy

2
� + cos2�qz

2
� =

9

4
, �8�

where we set the lattice constant a=1. However, in Ref. 3 we
relaxed the hard spin constraint of Si

2=1 to a soft constraint,
�i=1

n Si
2=n, where n is the number of sites in the unit cell.

Using energy minimization on spin clusters of classical spins
�with N=3�, we effectively imposed that the hard spin con-
straint show that the lowest-energy state actually exhibits a
coplanar magnetic order with wave vector � 2�

3 ,0 ,0� �Ref.
18�. We speculated that the soft constraint of conventional
large-N theory is crucial to the realization of partial order as
T→0 �Ref. 3�.

To find out whether a finite temperature transition to a
magnetically ordered state occurs, we have carried out large
scale MC simulations. The energy as a function of tempera-
ture, as seen in Fig. 2�a�, exhibits a smooth behavior before
an abrupt jump, which indicates a first-order transition to an
ordered state. The heat capacity as a function of temperature,
shown in Fig. 2�b�, clearly shows a peak corresponding to
the onset of magnetic order on the trillium lattice. Because of
strong hysteresis effects, the location of this jump appears to
scale to lower temperatures as the size of the system in-
creases. We have not attempted to determine the precise lo-
cation of this strongly first-order transition. Our best estimate
for the transition temperature is Tc=0.21�1� J. In Fig. 2�c�,
we plot the magnetic order parameter of this transition,
which is defined as the structure factor at the ordering wave
vector,19 Q= � 2�

3 ,0 ,0�:

�m�2 =
S�q = Q�

ns
. �9�

We see that this order parameter exhibits a sharp onset at the
transition temperature as would be expected for a first-order
phase transition.

It was anticipated that the MC would find a transition to a
120° coplanar magnetic state with the wave vector � 2�

3 ,0 ,0�,
where the spins on each triangle form at 120° to each other,

TABLE I. The coordinates of the trillium and distorted windmill
lattice sites in the first unit cell as shown in Fig. 1, are expressed in
terms of lattice parameters u and y, respectively, where we set the
corresponding lattice constants of the cubic lattices to unity.

Label Coordinates

1 �u ,u ,u�
2 � 1

2 +u , 1
2 −u ,1−u�

3 �1−u , 1
2 +u , 1

2 −u�
4 � 1

2 −u ,1−u , 1
2 +u�

a � 1
8 ,y , 1

4 +y�
b � 5

8 , 1
2 −y , 3

4 −y�
c � 1

4 −y , 7
8 , 1

2 +y�
d �1−y , 3

4 +y , 3
8 �

e � 3
8 ,1−y , 3

4 +y�
f � 1

4 +y , 1
8 ,y�

g � 3
4 −y , 5

8 , 1
2 −y�

h � 1
2 +y , 1

4 −y , 7
8 �

i � 7
8 , 1

2 +y , 1
4 −y�

j � 3
4 +y , 3

8 ,1−y�
k �y , 1

4 +y , 1
8 �

l � 1
2 −y , 3

4 −y , 5
8 �
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since it was shown �by minimization� that this is the lowest-
energy state. Thus this ground state does not have a macro-
scopic degeneracy3 and the observed transition is not ex-
pected to result from an order by disorder mechanism. An
intuitive way to understand the uniqueness of this ground
state is to start with a coplanar state with spins labeled as �,
�, and �, where the letters �, �, and � denote 120° rotated
spins on every triangle. It is then natural to ask whether one
can generate degenerate states by rotating � and � spins
around the axis of spin �. The high connectivity of this lat-
tice in comparison with the kagome and hyper-kagome
lattices,20 where such degeneracies naturally arise, prevents
any such rotations, which are not consistent with the crystal
symmetries of the lattice. Therefore, the rotation of � and �
spins around �-spin axis cannot generate distinctly different
states. This argument itself is not sufficient to prove that the
ground state is unique because, in principle, there might be
other ground states that are not connected to the � 2�

3 ,0 ,0�
state by simple spin rotations. However, our previous mini-

mization showed that the state with the wave vector
� 2�

3 ,0 ,0� is the lowest-energy state. Combining our current
MC result, we conclude that the ground state of Heisenberg
model on the trillium lattice is unique.

In the disordered state at temperatures above this ordering
transition, however, the spins fluctuate, and one might expect
to recover features found by large-N theory with the soft
constraint. Now the question is: To what extent is the partial
order of large-N theory recovered due to temperature fluc-
tuations?

Magnetic susceptibility �not shown� has been calculated
within both approaches and shows good agreement until it is
very close to the ordering temperature Tc�0.21 J, well be-
low the Curie-Weiss temperature �CW=2 J, and in the zero-
temperature limit. Qualitative comparisons between the
large-N theory and Monte Carlo results for the structure fac-
tor are shown in Fig. 3 in the cooperative paramagnetic
phase at temperatures slightly above the onset of magnetic
order. We see excellent qualitative agreement between these
two approaches. Within the cooperative paramagnetic win-
dow we see that the static structure factor on the trillium
lattice peaks around the surface of a spherelike shape deter-
mined by Eq. �8�, although part of this sphere is obliterated
by geometric �rather than energetic� effects.

Within both approaches the geometric factor �that is can-
cellations between spin contributions within the unit cell�
imposes that there is very little weight within the first Bril-
louin zone. In Fig. 4 a quantitative comparison along several
high-symmetry directions between these two approaches is
presented. There is extremely good agreement at all wave
vectors. Note that the cooperative paramagnetic regime is
smoothly connected to the partial order within large-N ap-
proaches. Therefore excellent agreement between the angle-
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FIG. 2. �Color online� �a� Average energy per spin, �b� heat
capacity, and �c� magnetic order parameter vs temperature for the
Heisenberg model on the trillium lattice. These results are indepen-
dent of the lattice parameter u, which determines the position of the
sites in a cubic unit cell. In this and all other plots, error bars are
smaller than the symbol size if not visible.

(a) (b)

(c) (d)

FIG. 3. Contour plots of the intensity of the structure factor in
the hhk ��a� and �b� and hk0 ��c� and �d� planes for the trillium
lattice in the cooperative paramagnetic regime �for u=0.138, L
=12, and T=0.25 J� show prominent features near these surfaces.
Classical Monte Carlo ��a� and �c� agrees well with large-N results
��b� and �d�. The maximal intensity is shown in white, and the axes
run from −4� to 4� along k�001� �vertical�, h�110� �horizontal�,
k�010� �vertical�, and h�100� �horizontal�. Notice the prominent fea-
tures near the zero energy surfaces given by Eq. �8� of the large-N
theory.

ISAKOV, HOPKINSON, AND KEE PHYSICAL REVIEW B 78, 014404 �2008�

014404-4



dependent spin-spin correlation functions implies that rem-
nants of partial order would be expected to appear at finite
temperatures above the transition temperature as a result of
thermal fluctuations.

IV. DISTORTED WINDMILL LATTICE

Mean-field calculations4 on the distorted windmill lattice
also revealed a partially ordered ground state, with a line of
degenerate wave vectors along the �qqq� direction. In this
paper we show that Monte Carlo simulations of the AF
Heisenberg model on this lattice find an ordered ground state
as on the trillium lattice. However, the physical origin of the
two phase transitions differs. While the ordering in the tril-
lium lattice can be understood by minimization, being the
result of energetically different states, the ordering in the

distorted windmill lattice cannot. Rather, it must proceed via
an order by disorder mechanism. As on the trillium lattice it
is interesting to ask whether the partial ordering features ob-
tained by large-N �or mean-field� theory can be found at
finite T, where one might expect the spins to fluctuate
strongly.21

Again, on the distorted windmill lattice, MC simulations
find a jump in the energy as a function of temperature indica-
tive of a first-order phase transition. Nonetheless, this transi-
tion is qualitatively different from that seen on the trillium
lattice, as it does not show strong hysteresis effects and much
variation with system size. This is reflected in a sharp tran-
sition from one smooth energy vs temperature curve to an-
other at the transition temperature as seen in Fig. 5�a�. The
heat capacity as a function of temperature, shown in Fig.
5�b�, clearly shows a peak corresponding to the onset of
magnetic order. The variation of the order parameter shows
an abrupt onset at the transition temperature. Here the order
parameter has been defined in terms of the structure factor at
the ordering wave vector,19 Q0= �0,0 ,0� as
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FIG. 4. �Color online� A quantitative comparison of the angle-
dependent structure factor is shown along three high-symmetry di-
rections between the Monte Carlo �Heisenberg model� and large-N
results for classical spins in the cooperative paramagnetic phase on
the trillium lattice �u=0.138, L=12�. The solid line is the large-N
result, while the symbols are from MC simulations.
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FIG. 5. �Color online� �a� Average energy per spin, �b� heat
capacity, and �c� magnetic order parameter vs temperature for the
Heisenberg model on the idealized �-Mn lattice.
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�m�2 =
S�q = Q0�

ns
. �10�

As in the case of the trillium lattice, we have not attempted
to determine the precise location of this first-order transition.
Our best estimate for the transition temperature is Tc
=0.155�5� J.

To understand this spin ordering, we have carried out an
energetic minimization of spin clusters with N=3. The mini-
mization of spin clusters on the distorted windmill lattice
with qqq symmetry is found to admit only two types of
magnetic spin substructures: one of which can repeat as it is
from one unit cell to the next, and another that undergoes a
120° spin rotation in progressing by one unit cell along the
�111� direction. Thus one has topologically distinct ground-
state sector unit-cell structures, which are shown in Table II
and labeled sq=0 and sq=2�/3, respectively, where the ordering
wave vector in sq=2�/3 is Qsp= � 2�

3 , 2�
3 , 2�

3 �. Curiously, as each
spin structure features coplanar 120° rotated spins on each
triangle, generic ground-state spin structures are found to
interchange between these two orderings. The only constraint
arising for a sq=2�/3 spin structure is that the spin structure
must complete three times the integral number of q= 2�

3 unit
cells within its boundaries. There are a macroscopic number
of degenerate ground states that can be generated by this
mixing of these two states, all of which exhibit a coplanar
order. This tendency to form a coplanar spin structure is
reminiscent of the nematically ordered state recently found
for the classical Heisenberg model on the hyper-kagome
lattice.22 We estimate that the degeneracy of the lattice grows
exponentially in the linear lattice size, L, roughly as e0.69L /6,
as shown in the Appendix.

Let us refer to spin configurations, which order with or-
dering wave vectors, as Q0 and Qsp states, respectively. To
understand the selection of the Q0 state over other states, we
carried out MC simulations with a Qsp state and a Qmix state
that has three planes with sq=0 spin configurations and three
planes with sq=2�/3 spin configurations for L=6 as initial
states, which allows the system to remain in these states. We
found that the energy of the Qsp state just below the transi-
tion temperature is lower than the energy of the Qmix state,
and the energy of the Qmix state is lower than the energy of
Q0, as shown in Fig. 6�a�. However, the latter state is always
selected as a ground state if an initial state has a random
configuration. This implies that the selection between Q0 and
other states is due to entropy. To confirm our intuition, we
computed the specific heats of the Q0, Qmix, and Qsp states,
and found that the specific heat of the Q0 state is larger than
that of the Qmix or that of the Qsp states below the transition
temperature as shown in Fig. 6�b�. This confirms that there
are more low-lying modes for the Q0 state, which leads to
the selection of the Q0 state over the other states of the
degenerate ground-state manifold.

Now let us study the cooperative paramagnetic state
above the transition temperature. Magnetic susceptibility
�not shown� has been calculated within both approaches and

TABLE II. Connections and ground-state candidates of the clas-
sical Heisenberg model on the distorted windmill ��-Mn� lattice.
When the lattice parameter, y= 9−�33

16 , then the nearest-neighbors one
and two are at equivalent distances �Ref. 23�. The final column
shows the two spin structures minimization finds. Here �� ,� ,��
refer to 120° rotated spins. In moving to the next unit cell, the sq=0

structure is unchanged while the sq=2�/3 structure replaces �→�
→�→�.

Label Near. neighb. 1 Near. neighb. 2 sq=0 sq=2�/3

a c−ŷ ,d−x̂−ŷ , f ,k j−x̂ , l � �

b g ,h , j , l d−ŷ , f � �

c a+ŷ ,d−x̂ ,e , l h−x̂+ŷ , i−x̂+ẑ � �

d a+x̂+ŷ ,c+x̂ ,g , i b+ŷ , f+ŷ � �

e c , f+ŷ+ẑ ,h+ŷ , l g+ẑ ,k+ẑ � �

f a ,e−ŷ−ẑ ,h−ẑ ,k b ,d−ŷ � �

g b ,d , i , l e−ẑ ,k � �

h b ,e−ŷ , f+ẑ , j c+x̂−ŷ , i−ŷ+ẑ � �

i d ,g , j−ẑ ,k+x̂ c+x̂−ẑ ,h+ŷ−ẑ � �

j b ,h , i+ẑ ,k+x̂+ẑ a+x̂ , l+x̂ � �

k a , f , i−x̂ , j−x̂−ẑ e−ẑ ,g � �

l b ,c ,e ,g a , j−x̂ � �
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FIG. 6. �Color online� For lattice size L=6, �a� Energy and �b�
Heat capacity vs temperature for the AF Heisenberg model on the
distorted windmill lattice with different initial spin configurations.
The filled squares, circles, and triangles represent the Q0, Qsp, and
Qmix spin configurations, respectively. The system remains in its
initial configuration below the transition. Note that starting with any
random spin configurations leads to the Q0 state. �a� shows that the
Qsp and Qmix states have the same energy as the Q0 state as T
→0, and have lower energy than the Q0 state just below the tran-
sition temperature. However, �b� indicates that the Qsp state has
lower entropy below the transition than the Qmix state and that state
in turn has lower entropy than Q0 state. This is evidence that the
selection of the Q0 state is of entropic origin, i.e., order by disorder.
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shows good agreement until it is very close to the ordering
temperature Tc�0.155 J, well below the Curie-Weiss tem-
perature �CW=2 J, and in the zero-temperature limit. Quali-
tative comparisons between the large-N theory and Monte
Carlo results for the structure factor are shown in Fig. 7 in
the cooperative paramagnetic phase at temperatures slightly
above the onset of magnetic order. We see excellent qualita-
tive agreement between these two approaches. On the dis-
torted windmill lattice the structure factor intensity is con-
centrated along the degenerate lines of the large-N result.
Within both approaches there is a very little weight in the
first Brillouin zone due to the geometric factor. In Fig. 8 a
quantitative comparison along several high-symmetry direc-
tions between these two approaches is presented. There is
extremely good agreement at all wave vectors.

V. DISCUSSION AND SUMMARY

A magnetic material where the magnetic properties can be
described by the AF Heisenberg model on the trillium lattice
is CeIrSi. It shows24 a Curie-Weiss susceptibility above 100
K with a magnetic moment of 2.56 
B /Ce atom and a
�CW=24 K. At low temperatures, �−1 shows a gradual
downturn,24,25 a characteristic common to many triangle-
based frustrated magnets. X-ray scattering shows the lattice
structure of this material to have a cubic P213 symmetry,24

with a positional parameter xCe=0.6183 �Ref. 26�. Then the
Ce sites, which hold magnetic moments consistent with 4f1

electrons, form a trillium lattice of corner-shared triangles.
The �nonzeroed� interaction matrix is identical to that pre-
sented in Eq. �5� of Ref. 3 if one takes the lattice parameter
uCe=xCe− 1

2 �Ref. 27�. Curiously the energetics of the AF
Heisenberg model do not depend on the lattice parameter u
directly. As shown in Fig. 9, one expects that the realization

of this model with different values of u will again access a
cooperative paramagnetic regime but with differing weights
over the surface of the MF degenerate spheres.

Reference 24 is the only study of the physics of CeIrSi. In
this work the magnetic susceptibility and x-ray spectra of
polycrystalline powdered samples have been measured, giv-
ing evidence that this material remains disordered to low
temperatures. It would be very interesting to see whether or
not neutron-scattering measurement on a single crystal of
CeIrSi may show evidence of partial order at low tempera-
tures giving way to long-range order, as we predict for an
antiferromagnetic Heisenberg model on the trillium lattice.

The relevance of our study to �-Mn and MnSi is less
obvious, as both materials are metallic. However, the mag-
netic sites of each lattice features one of the three-
dimensional corner-shared triangle lattices structures here
studied, with �-Mn being the only known material to form in
the distorted windmill structure. While the origin of the un-
usual non-Fermi liquid resistivity seen under pressure in

(a) (b)

(d)(c)

FIG. 7. Contour plots of the intensity of the structure factor in
the hhk ��a� and �b� and hk0 ��c� and �d� planes for the �-Mn
lattice in the cooperative paramagnetic regime �for the lattice pa-
rameter y= �9−�33� /16, L=8, and T=0.2 J�. Classical Monte
Carlo ��a� and �c� agrees well with large-N results ��b� and �d�.
The maximal intensity is shown in white. Axes run from
�−4� ,4�� in k and h, where k�001� describes the vertical axis of �a�
and �b�, and h�110� the horizontal; k�010� describes the vertical axis
of �c� and �d� and h�100� the horizontal.

0

2

4

6

8

10

12

14

16

0 2π 4π 6π 8π 10π 12π 14π 16π

S(
q)

q[100]

(a)

(b)

(c)

T=0.3J
T=0.5J
T=0.8J

0

2

4

6

8

10

0 2π 4π 6π 8π 10π 12π 14π 16π

S(
q)

q[110]

(a)

(b)

(c)

T=0.3J
T=0.5J
T=0.8J

0

1

2

3

4

0 2π 4π 6π 8π 10π 12π 14π 16π

S(
q)

q[111]

(a)

(b)

(c)
T=0.3J
T=0.5J
T=0.8J

FIG. 8. �Color online� A quantitative comparison of the angle-
dependent structure factor is shown along three high-symmetry di-
rections between the Monte Carlo �Heisenberg model� and large-N
results for classical spins in the cooperative paramagnetic phase on
�-Mn lattice �L=8�. The solid line is the large-N result, while the
symbols are from MC simulations.
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MnSi �Ref. 28� ����AT3/2� is not at present understood, the
same temperature exponent is observed29 in �-Mn where it is
expected to result from antiferromagnetic spin fluctuations. It
is worthwhile to investigate the possible link between the
magnetic fluctuations and the non-Fermi liquid behavior in
these materials. In this vein, it is interesting to note that
powder neutron scattering down to 1.4 K �Ref. 30� in �-Mn
shows no signature of magnetic order. We are hopeful that
this study might provide the motivation for single-crystal
neutron scattering to be carried out on �-Mn.

In summary, we have used large-N theory for O�N� vector
spins and classical MC simulations to study the AF Heisen-
berg model on two three-dimensional corner-shared triangle
lattices, each site of which belongs to three equilateral tri-
angles. The large-N studies suggested that the geometrical
frustration present would lead to a partially ordered state on
both lattices. However, through the minimization of finite-
size spin clusters, we found the ground-state manifolds on
these two lattices to be quite different, despite the local simi-
larity between these corner-sharing triangle lattice structures.
In both cases, we found that there is a first-order transition to
a magnetically ordered state using MC methods. We further
showed that the trillium lattice exhibits a unique ground state
with a spiral ordering, while the distorted windmill has a
macroscopic ground-state degeneracy. Magnetic ordering of
the classical AF Heisenberg model on the distorted windmill
lattice is therefore seen to arise via an order by disorder
mechanism. The degeneracy of this model on the trillium
lattice is seen to be an artificial effect of the soft constraint of
the large-N theory.

Despite the above noted differences at low temperatures
between large-N and MC results, in the cooperative para-
magnetic phase above the transition temperature, we find a
remarkable resemblance between the respective spin-spin
correlations. This leads us to ask whether the salient features
of the large-N theory, the angular and directional depen-
dences of the spin-spin correlations found in the partially
ordered state obtained by large-N theory, are present at finite
temperatures above the transition temperature. As true partial

order exhibits long-range order along particular directions
only as T→0, it is not possible to have partial order at any
finite temperatures, since the spin-spin correlation decay ex-
ponentially at finite temperatures. This being said, the quali-
tative directional dependence characteristic of a partially or-
dered state survives above the transition-temperature �note
that the ground state is smoothly connected to the coopera-
tive paramagnetic phase in large-N theory� allowing us to
conclude that a “disguised” partial order has been recovered
in the cooperative paramagnetic phase.
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APPENDIX: DEGENERACY OF THE DISTORTED
WINDMILL LATTICE GROUND STATE

To estimate the degeneracy of the ground state, we realize
that fixing �� ,� ,�� in Table I leaves us with six tilings of the
spins in the unit cell, which we might label
�sq=0

1 ,sq=0
2 ,sq=0

3 ,sq=2�/3
1 ,sq=2�/3

2 ,sq=2�/3
3 �. Here s1 is taken to be

the spin structure as presented in Table I, s2 is the same
taking �→�→�→�, and s3 is the same taking �→�→�
→�. In progressing from one unit cell to the next along the
�111� direction, we can follow sq=0

1 with either sq=0
1 or sq=2�/3

1 ,
sq=2�/3

1 can be followed by either sq=2�/3
2 or sq=0

2 . Replacing
1→2→3→1 gives the general rules for allowed spin struc-
tures �provided the number of sq=2�/3 structures is a multiple
of three�. With these rules, it becomes a problem in combi-
natorics to determine the ground-state degeneracy.

For simplicity,31 let us consider a finite-size lattice with
L�L�L unit cells, with L divisible by three. Clearly we
have one state with only sq=2�/3

i spin structures. By removing
three sq=2�/3

i spin structures, we can insert three sq=0
j spin

structures in their place or, more generally, removing 3m
planes of unit cells, which rotate as they progress along the
�111� direction, allows the introduction of 3m planes of spin
structures that need not rotate from one plane to the next.
Upon such a removal, there should be 3l−3m available unit-
cell planes for 3m equivalent spin structures. This implies a
degeneracy of approximately;32

Nlm =
�3l − 1�!

�3m� ! �3l − 3m − 1�!
, �A1�

where m can be �0,1 , .. , l�. Summing over m then gives the
total number of states:

NL � �
m=1

l−1
�3l − 1�!

�3m� ! �3l − 3m − 1�!
, �A2�

�
1

3 �
m=0

3l−1
�3l − 1�!

m ! �3l − m − 1�!
=

23l−1

3
=

2L

6
, �A3�

so the number of ground states grows exponentially in the
linear lattice size, roughly as NL� eln 2L

6 � e0.69L

6 .

u=0.025 u=0.125 u=0.225

FIG. 9. Contour plots of the intensity of the large-N theory
structure factor in the hhk plane for different values of u. The ver-
tical axis is k�001� and the horizontal axis is h�110�, where k and h
both run from �−4� ,4��. Varying the parameter u, does not change
the energy within either the large-N theory �here N=3, L=24, and
T=1 /4.5 J�, nor in classical Monte Carlo simulations. It does, how-
ever, change the geometric contribution to the structure factor quite
dramatically. While near u=0.125 �center� one appears to see few
vestiges of the degenerate spheres of the treatment, for both large
�right� and small �left� values of u, one sees that these are quite well
captured. Curiously, most real systems seem to lie closer to the
middle graph.
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